If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5k^2+48k-20=0
a = 5; b = 48; c = -20;
Δ = b2-4ac
Δ = 482-4·5·(-20)
Δ = 2704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2704}=52$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-52}{2*5}=\frac{-100}{10} =-10 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+52}{2*5}=\frac{4}{10} =2/5 $
| 7(4-6b)+6(5b+1)=34 | | -x-4x-7=2x-4x+1 | | -4p-2(4-5p)=2(p-6)-36 | | -4.8y=-2.4 | | -90+5x=540 | | 2x-(5-x=5/2 | | (x-1)(x-2)(x-3)(x-4)-1=0 | | 5p=4p+31 | | 31.4+2x=180 | | 56=15v-7v | | 6(2r-5)=-12 | | 2-5x=-11 | | 31+7d=-12 | | 12y+49=145 | | (12x+15)=75 | | 44-3k=56 | | 4c=2c-30 | | (6y-27)=105 | | +3g+9=15 | | -t=9+8t | | 10x+5x=5x+10 | | -6h=-7h+9 | | 52=3y+16 | | (x-15)=52 | | 49=-5d+9 | | 2=x/4-11 | | 11y+39=83 | | 3x=4x+2.8 | | 8x+0.2=32.2 | | 180x^2-120=0 | | 10x-3x+87=10x+42 | | 27=9(k-10) |